FURTHER MATHEMATICS/MATHEMATICS (ELECTIVE)

AIMS OF THE SYLLABUS

The aims of the syllabus are to test candidates'

- (i) development of further conceptual and manipulative skills in Mathematics;
- (ii) understanding of an intermediate course of study which bridges the gap between Elementary Mathematics and Higher Mathematics;
- (iii) acquisition of aspects of Mathematics that can meet the needs of potential Mathematicians, Engineers, Scientists and other professionals.
- (iv) ability to analyse data and draw valid conclusion
- (v) logical, abstract and precise reasoning skills.

EXAMINATION SCHEME

There will be two papers, Papers 1 and 2, both of which must be taken.

PAPER 1: will consist of forty multiple-choice objective questions, covering the entire syllabus. Candidates will be required to answer all questions in $1\frac{1}{2}$ hours for 40 marks. The questions will be drawn from the sections of the syllabus as follows:

Pure Mathematics	-	30 questions
Statistics and probability	-	4 questions
Vectors and Mechanics	-	6 questions

- **PAPER 2:** will consist of two sections, Sections A and B, to be answered in $2\frac{1}{2}$ hours for 100 marks.
- Section A will consist of eight compulsory questions that areelementary in type for 48 marks. The questions shall be distributed as follows:

Pure Mathematics	-	4 questions
Statistics and Probability	-	2 questions
Vectors and Mechanics	-	2 questions

Section B will consist of seven questions of greater length and difficulty put into three parts:Parts I, II and III as follows:

Part I: Pure Mathematics - 3 questions

Part II: Statistics and Probability - 2 questions

Part III: Vectors and Mechanics - 2 questions

Candidates will be required to answer four questions with at least one from each part for 52 marks.

DETAILED SYLLABUS

In addition to the following topics, more challenging questions may be set on topics in the General Mathematics/Mathematics (Core) syllabus.

In the column for CONTENTS, more detailed information on the topics to be tested is given while the limits imposed on the topics are stated under NOTES.

Topics which are marked with asterisks shall be tested in Section B of Paper 2 only.

KEY:

* Topics peculiar to Ghana only.

** Topics peculiar to Nigeria only

Topics	Content	Notes
I. Pure Mathematics		
(1) Sets	(i) Idea of a set defined by a property, Set notations and their meanings.	(x : x is real), ∪, ∩, { },∉, ∈, ⊂, ⊆,
	(ii) Disjoint sets, Universal set and complement of set	U (universal set) and A' (Complement of set A).
	(iii) Venn diagrams, Use of sets And Venn diagrams to solve problems.	More challenging problems involving union, intersection, the universal set, subset and complement of set.
	(iv) Commutative and Associative laws, Distributive properties over union and intersection.	Three set problems. Use of De Morgan's laws to solve related problems
(2) Surds	Surds of the form $\frac{a}{\sqrt{b}}$, $a\sqrt{b}$ and $a+b\sqrt{n}$ where a is rational, b is a positive integer and n is not a perfect square.	All the four operations on surds Rationalising the denominator of surds such as $\frac{a}{\sqrt{b}}$, $\frac{a+\sqrt{b}}{c-\sqrt{d}}$,

(3) Binary Operations		$\frac{a+\sqrt{b}}{\sqrt{c}-\sqrt{d}}$
	Properties: Closure, Commutativity, Associativity and Distributivity, Identity elements and inverses.	Use of properties to solve related problems.
(4) Logical Reasoning	 (i) Rule of syntax: true or false statements, rule of logic applied to arguments, implications and deductions. 	Using logical reasoning to determine the validity of compound statements involving implications and connectivities. Include use of symbols: $\sim P$ $p \lor q, p \land q, p \Rightarrow q$
	(ii) The truth table	Use of Truth tables to deduce conclusions of compound statements. Include negation.
(5) Functions	(i) Domain and co-domain of a function.	The notation e.g. $f: x \rightarrow$ 3x+4;
	(ii) One-to-one, onto, identity and constant mapping;	$g: x \to x^2$; where $x \in \mathbf{R}$.
		Graphical representation of a function ; Image and the range.
	(iii) Inverse of a function.	Determination of the inverse of a one-to-one function e.g. If f: $x \rightarrow sx + \frac{4}{3}$, the inverse relation f ⁻¹ : $x \rightarrow \frac{1}{3}x - \frac{4}{9}$ is also a function.
	(iv) Composite of functions.	Notation: $f_{0}g(x) = f(g(x))$ Restrict to simple algebraic functions only.
(6) Polynomial Functions	(i) Linear Functions, Equations and Inequality	Recognition and sketching of graphs of linear functions and equations. Gradient and intercepts forms of linear equations i.e. $ax + by + c = 0; y = mx + c; \frac{y}{a}$ $+ \frac{x}{b} = k$. Parallel and Perpendicular lines. Linear Inequalities e.g. $2x + 5y \le 1$,

(ii) Quadratic Functions, Equations and Inequalities	Graphical representation of linear inequalities in two variables. Application to Linear Programming. Recognition and sketching graphs of quadratic functions
	e.g. f: $x \rightarrow ax^2 + bx + c$, where a, b and $c \in R$. Identification of vertex, axis of symmetry, maximum and minimum, increasing and decreasing parts of a parabola. Include values of x for which
	f(x) > 0 or $f(x) < 0$. Solution of simultaneous equations: one linear and one quadratic. Method of completing the squares for solving quadratic equations. Express $f(x) = ax^2 + bx + c$ in the form $f(x) = a(x + d)^2 + k$,
	where k is the maximum or minimum value. Roots of quadratic equations – equal roots (b^2 - 4ac = 0), real and unequal roots (b^2 – 4ac > 0), imaginary roots (b^2 – 4ac < 0); sum and product of roots of a quadratic equation e.g. if the roots of the equation $3x^2$ + 5x
(ii) Cubic Functions and Equations	+ 2 = 0 are <i>α</i> and β, form the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$. Solving quadratic inequalities.
	Recognition of cubic functions e.g. f: $x \rightarrow ax^3 + bx^2 + cx + d$. Drawing graphs of cubic functions for a given range. Factorization of cubic expressions and solution of cubic equations. Factorization of $a^3 \pm b^3$. Basic operations on polynomials, the remainder and factor theorems i.e. the

		remainder when $f(x)$ is divided by $f(x - a) = f(a)$. When $f(a)$ is zero, then $(x - a)$ is a factor of f(x).
(7) Rational Functions	 (i) Rational functions of the form Q(x) = f(x)/g(x), g(x) ≠ 0. where g(x) and f(x) are polynomials. e.g. f:x → ax+b/px²+qx+r (ii) Resolution of rational functions into partial fractions. 	g(x) may be factorised into linear and quadratic factors (Degree of Numerator less than that of denominator which is less than or equal to 4). The four basic operations. Zeros, domain and range, sketching not required.
(8) Indices and Logarithmic Functions	(i) Indices	Laws of indices. Application of the laws of indices to evaluating products, quotients, powers and nth root. Solve equations involving indices.
	(ii) Logarithms	Laws of Logarithms. Application of logarithms in calculations involving product, quotients, power (log a ⁿ), nth roots (log \sqrt{a} , log a ^{1/n}). Solve equations involving logarithms (including change of base). Reduction of a relation such as y = ax ^b , (a,b are constants) to a linear form: log ₁₀ y = b log ₁₀ x+log ₁₀ a. Consider other examples such as log ab ^x = log a + x log b;

		log $(ab)^x = x(\log a + \log b)$ = x log ab *Drawing and interpreting graphs of logarithmic functions e.g. y = ax ^b . Estimating the values of the constants a and b from the graph
(9) Permutation And Combinations.	(i) Simple cases of arrangements(ii) Simple cases of selection of objects.	Knowledge of arrangement and selection is expected. The notations: ${}^{n}C_{r}$, $\binom{n}{r}$ and ${}^{n}P_{r}$ for selection and arrangement respectively should be noted and used. e.g. arrangement of students in a row, drawing balls from a box with or without replacements. ${}^{n}p_{r} = \frac{n!}{(n-r)!}$ ${}^{n}C_{r} = \underline{n!}$ r!(n-r)!
(10) Binomial Theorem	Expansion of $(a + b)^n$. Use of $(1+x)^n \approx 1+nx$ for any rational n, where x is sufficiently small. e.g $(0.998)^{1/3}$	Use of the binomial theorem for positive integral index only. Proof of the theorem not required.
(11) Sequences and Series	 (i) Finite and Infinite sequences. (ii) Linear sequence/Arithmetic Progression (A.P.) and Exponential sequence/Geometric Progression (G.P.) 	e.g. (i) u_1 , u_2 ,, u_n . (ii) u_1 , u_2 , Recognizing the pattern of a sequence. e.g. (i) $U_n = U_1 + (n-1)d$, where d is the common difference. (ii) $U_n = U_1 r^{n-1}$ where r is the common ratio.
	(iii) Finite and Infinite series.(iv) Linear series (sum of A.P.) and exponential series (sum of G.P.)	(i) $U_1 + U_2 + U_3 + + U_n$ (ii) $U_1 + U_2 + U_3 +$ (i) $S_n = \frac{n}{2}(U_1 + U_n)$ (ii) $S_n = \frac{n}{2}[2a + (n - 1)d]$

	*(v) Recurrence Series	(iii) $S_n = \frac{U_1(1-r^n)}{1-r}$, r<1 (iv) $S_n = \frac{U_1(r^n-1)}{r-1}$, r>1. (v) Sum to infinity (S) = $\frac{a}{1-r}$ r < 1
(12)Matrices and Linear	(i) Matrices	Generating the terms of a recurrence series and finding an explicit formula for the sequence e.g. $0.9999 = \frac{9}{10} + \frac{9}{10^2} + \frac{9}{10^3} + \frac{9}{10^4} + \dots$
Transformation	(ii) Determinants	Concept of a matrix – state the order of a matrix and indicate the type. Equal matrices – If two matrices are equal, then their corresponding elements are equal. Use of equality to find missing entries of given matrices Addition and subtraction of matrices (up to 3 x 3 matrices). Multiplication of a matrix by a scalar and by a matrix (up to 3 x 3 matrices)
	(iii) Inverse of 2 x 2 Matrices	Evaluation of determinants of 2 x 2 matrices. **Evaluation of determinants of 3 x 3 matrices. Application of determinants to solution of simultaneous linear equations.
	(iv) Linear Transformation	e.g. If A = $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then A ⁻¹ = $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
		Finding the images of points under given linear transformation

		Determining the matrices of
		given linear transformation.
		Finding the inverse of a linear
		transformation (restrict to 2 x 2
		matrices).
		Finding the composition of
		linear transformation.
		Recognizing the Identity
		transformation.
		(i) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ reflection in the x - axis
		(ii) $\begin{bmatrix} -1 & 0 \end{bmatrix}$ reflection in the
		y - axis
		(iii) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ reflection in the line
		$y = x$ (iv) $\begin{cases} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{cases}$ for anti-
		$\cos \theta$ $\sin \theta$ $\cos \theta$ $\sin \theta$ clockwise rotation through θ
		about the origin.
		(v) $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$, the
		(v) $sin2\theta$ $-cos2\theta$, the
		general matrix for reflection in
		a line through the origin
		making an angle θ with the positive x-axis.
		*Finding the equation of the
		image of a line under a given
		linear transformation
(13)Trigonometry	(i) Trigonometric Ratios and Rules	
		Sine, Cosine and Tangent of
		general angles $(0^{\circ} \le 0^{\circ} \le 360^{\circ})$.
		Identify trigonometric ratios of
		angles 30 ⁰ , 45 ⁰ , 60° without
		use of tables.
		Use basic trigonometric ratios
		and reciprocals to prove given
		trigonometric identities. Evaluate sine, cosine and
		tangent of negative angles.
		Convert degrees into radians
		and vice versa.
		Application to real life situations
		such as heights and distances,
		perimeters, solution of
		triangles, angles of elevation
		and depression,

		bearing(negative and positive
		angles) including use of sine
		and cosine rules, etc,
		Simple cases only.
	(ii) Compound and Multiple	
	Angles.	sin (A \pm B),cos (A \pm B),
		$tan(A \pm B).$
		Use of compound angles in
		simple identities and solution of
		trigonometric ratios e.g. finding
		sin 75°, cos 150°etc, finding tan
		45° without using mathematical
		tables or calculators and
		leaving your answer as a surd,
		etc.
		Use of simple trigonometric
		identities to find trigonometric
		ratios of compound and
		multiple angles (up to 3A).
	(iii) Trigonometric Functions and	
	Equations	
		Relate trigonometric ratios to
		Cartesian Coordinates of points
		(x, y) on the circle $x^2 + y^2 = r^2$.
		f:x \rightarrow sin x,
		g: $x \rightarrow a \cos x + b \sin x = c$.
		Graphs of sine, cosine, tangent
		and functions of the form
		asinx + bcos x. Identifying
		maximum and minimum point,
		increasing and decreasing
		portions. Graphical solutions of
		simple trigonometric equations
		e.g. asin $x + b\cos x = k$.
		Solve trigonometric equations
		up to quadratic equations e.g.
		$2\sin^2 x - \sin x - 3 = 0$, for $0^\circ \le x$
		$\leq 360^{\circ}$.
		*Express $f(x) = asin x + bcos x$
		in the form Rcos (x $\pm \alpha$) or Rsin
		$(x \pm \alpha)$ for $0^{\circ} \le \alpha \le 90^{\circ}$ and use
		the result to calculate the
		minimum and maximum points
		of a given functions.
(14)Co-ordinate	(i) Straight Lines	
Geometry		
,		Mid-point of a line segment
		Coordinates of points which
l		coordinates of points which

		divides a given line in a given ratio. Distance between two points; Gradient of a line; Equation of a line: (i) Intercept form; (ii) Gradient form; Conditions for parallel and perpendicular lines.
		Calculate the acute angle between two intersecting lines e.g. if m ₁ and m ₂ are the gradients of two intersecting lines, then tan $\theta = \frac{m_1 - m_2}{1 + m_1 m_2}$. If m ₁ m ₂ = -1, then the lines are perpendicular. *The distance from an external point P(x ₁ , y ₁) to a given line ax + by + c using the formula $d = \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} $.
	(ii) Conic Sections	$\sqrt{a^2+b^2}$
(15)Differentiation	(i) The idea of a limit	Loci of variable points which move under given conditions Equation of a circle: (i) Equation in terms of centre, (a, b), and radius, r, $(x - a)^2 + (y - b)^2 = r^2$; (ii) The general form: $x^2+y^2+2gx+2fy+c = 0$, where (-g, -f) is the centre and radius, $r = \sqrt{a^2 + b^2 - c}$. Tangents and normals to circles Equations of parabola in rectangular Cartesian coordinates ($y^2 = 4ax$, include parametric equations (at^2 , at)). Finding the equation of a tangent and normal to a parabola at a given point. *Sketch graphs of given parabola and find the equation of the axis of symmetry.
		(i) Intuitive treatment of limit.

		Relate to the gradient of a curve. e.g. $f^{I}(\mathbf{x}) =$ $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$.
	(ii) The derivative of a function	(ii) Its meaning and its
		determination from first principles (simple cases only).
	(iii)Differentiation of polynomials	e.g. $ax^{n} + b, n \le 3, (n \in I)$
	(iv) Differentiation of trigonometric Functions	e.g. $ax^m - bx^{m-1} + \dots + k$, where m $\in I$, k is a constant.
	(v) Product and quotient rules.	e.g. sin x, y = a sin x \pm b cos x. Where a, b are constants.
	Differentiation of implicit functions such as $ax^{2} + by^{2} = c$	including polynomials of the form $(a + bx^n)^m$.
	**(vi) Differentiation of Transcendental Functions	
	(vii) Second order derivatives and Rates of change and small	e.g. $y = e^{ax}$, $y = \log 3x$, $y = \ln x$
	changes (Δx), Concept of Maxima and Minima	(i) The equation of a tangent to a curve at a point.
		(ii) Restrict turning points to maxima and minima.
(16)Integration	(i) Indefinite Integral	(iii)Include curve sketching (up to cubic functions) and linear kinematics.
		(i) Integration of polynomials of the form ax^n ; $n \neq -1$. i.e. $\int x^n dx = \frac{x^{n+1}}{n+1} + c$, $n \neq -1$.
		(ii) Integration of sum and difference of polynomials. e.g. $\int (4x^3+3x^2-6x+5) dx$
		**(iii)Integration of polynomials of the form ax^n ; $n = -1$.

	(ii) Definite Integral	i.e. $\int x^{-1} dx = \ln x$
II. Statistics and Probability (17)Statistics	(ii) Definite Integral(iii) Applications of the Definite Integral	Simple problems on integration by substitution. Integration of simple trigonometric functions of the form $\int_{a}^{b} \sin x dx$. (i) Plane areas and Rate of Change. Include linear kinematics. Relate to the area under a curve. (ii)Volume of solid of revolution
	(i) Tabulation and Graphical representation of data(ii) Measures of location	 (iii) Approximation restricted to trapezium rule. Frequency tables. Cumulative frequency tables. Histogram (including unequal class intervals). Cumulative frequency curve (Ogive) for grouped data.
	(iii) Measures of Dispersion	Central tendency: mean, median, mode, quartiles and percentiles. Mode and modal group for grouped data from a histogram. Median from grouped data. Mean for grouped data (use of an assumed mean required). Determination of: (i) Range, Inter- Quartile and Semi inter-quartile range from an Ogive. (ii) Mean deviation, variance and standard deviation for grouped and ungrouped

	(iv)Correlation	data. Using an assumed mean or true mean.
(18)Probability	(i) Meaning of probability.	Scatter diagrams, use of line of best fit to predict one variable from another, meaning of correlation; positive, negative and zero correlations,. Spearman's Rank coefficient. Use data without ties. *Equation of line of best fit by least square method. (Line of regression of y on x).
	(ii) Relative frequency.	Tossing 2 dice once; drawing from a box with or without replacement.
	(iii) Calculation of Probability using simple sample spaces.	Equally likely events, mutually exclusive, independent and conditional events.
	(iv) Addition and multiplication of probabilities.	Include the probability of an event considered as the probability of a set.
	(v) Probability distributions.	
		(i) Binomial distribution $P(x=r)={}^{n}C_{r}p^{r}q^{n-r}$, where Probability of success = p, Probability of failure = q, p + q = 1 and n is the number of trials. Simple problems only.
III. Vectors and		**(ii) Poisson distribution $P(x) = \frac{e^{-\lambda}\lambda^{x}}{x!}, \text{ where } \lambda = np,$
Mechanics		n is large and p is small.
(19)Vectors	(i) Definitions of scalar and vector Quantities.	
	(ii) Representation of Vectors.	

(iii) Algebra of Vectors. (iv) Commutative, Associative and Distributive Properties.	Representation of vector $\binom{a}{b}$ in the form a i + b j . Addition and subtraction, multiplication of vectors by vectors, scalars and equation of vectors. Triangle, Parallelogram and polygon Laws. Illustrate through diagram, Illustrate by solving problems in elementary plane geometry e.g con-currency of medians and diagonals.
(v) Unit vectors.	The notation: <i>i</i> for the unit vector $\begin{bmatrix} 1\\0 \end{bmatrix}$ and <i>j</i> for the unit vector $\begin{bmatrix} 0\\1 \end{bmatrix}$ along the x and y axes respectively. Calculation of unit vector (\hat{a}) along a i.e. $\hat{a} = \frac{a}{ a }$.
(vi) Position Vectors.	Position vector of A relative to O is \overrightarrow{OA} . Position vector of the midpoint of a line segment. Relate to coordinates of mid-point of a line segment. *Position vector of a point that divides a line segment internally in the ratio ($\lambda : \mu$).
(vii) Resolution and Composition of Vectors.	Applying triangle, parallelogram and polygon laws to composition of forces acting at a point. e.g. find the resultant of two forces (12N, 030°) and (8N, 100°) acting at a point. *Find the resultant of vectors by scale drawing.
(viii) Scalar (dot) product and its	Finding angle between two vectors. Using the dot product to

	application.	establish such trigonometric formulae as (i) Cos (a \pm b) = cos a cos b \mp sin a sin b
		(ii) sin (a ± b)= sin a cos b ± sin <i>b</i> cos <i>a</i>
		(iii) $c^2 = a^2 + b^2 - 2ab \cos C$
		(iv) $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.
	**(ix) Vector (cross) product and its application.	
(20)Statics		
	(i) Definition of a force.	
	(ii) Representation of forces.	
	(iii) Composition and resolution of coplanar forces acting at a point.	
	(iv) Composition and resolution of general coplanar forces on rigid bodies.	
	(v) Equilibrium of Bodies.	Apply to simple problems e.g. suspension of particles by strings.
	(vi) Determination of Resultant.	Resultant of forces, Lami's theorem
	(vii) Moments of forces.	Using the principles of moments to solve related problems.
	(viii) Friction.	Distinction between smooth and rough planes. Determination of the coefficient of friction.
(21)Dynamics		

(i) The concepts of motion	The definitions of displacement, velocity, acceleration and speed. Composition of velocities and accelerations.
(ii) Equations of Motion	Rectilinear motion. Newton's laws of motion. Application of Newton's Laws Motion along inclined planes (resolving a force upon a plane into normal and frictional forces). Motion under gravity (ignore air resistance). Application of the equations of motions: $V = u + at$, $S = ut + 1/2 at^2$; $v^2 = u^2 + 2as$.
(iii) The impulse and momentum equations:	Conservation of Linear Momentum(exclude coefficient of restitution). Distinguish between momentum and impulse.
**(iv) Projectiles.	Objects projected at an angle to the horizontal.

1. <u>UNITS</u>

Candidates should be familiar with the following units and their symbols.

(1) Length

1000 millimetres (mm) = 100 centimetres (cm) = 1 metre(m). 1000 metres = 1 kilometre (km)

(2) <u>Area</u>

10,000 square metres $(m^2) = 1$ hectare (ha)

(3) <u>Capacity</u>

1000 cubic centimeters $(cm^3) = 1$ litre (I)

(4) <u>Mass</u>

1000 milligrammes (mq) = 1 gramme (q)

1000 grammes (g) = 1 kilogramme(kg)

1000 ogrammes (kg) = 1 tonne.

(5) Currencies

The Gambia	-	100 bututs (b) = 1 Dalasi (D)
Ghana	-	100 Ghana pesewas (Gp) = 1 Ghana Cedi (GH¢)
Liberia	-	100 cents (c) = 1 Liberian Dollar (LD)
Nigeria	-	100 kobo (k) = 1 Naira (₦)
Sierra Leone	-	100 cents (c) = 1 Leone (Le)
UK	-	100 pence (p) = 1 pound (£)
USA	-	100 cents (c) = 1 dollar (
French Speaking territories		100 centimes (c) = 1 Franc (fr)
Any other units used will be defined.		

Any other units used will be defined.

2. OTHER IMPORTANT INFORMATION

(1) Use of Mathematical and Statistical Tables

Mathematics and Statistical tables, published or approved by WAEC may be used in the examination room. Where the degree of accuracy is not specified in a question, the degree of accuracy expected will be that obtainable from the mathematical tables.

Use of calculators (2)

The use of non-programmable, silent and cordless calculators is allowed. The calculators must, however not have a paper print out nor be capable of receiving/sending any information. Phones with or without calculators are not allowed.

(3) **Other Materials Required for the examination**

Candidates should bring rulers, pairs of compasses, protractors, set squares etc required for papers of the subject. They will **not** be allowed to borrow such instruments and any other material from other candidates in the examination hall.

Graph papers ruled in 2mm squares will be provided for any paper in which it is required.

(4) Disclaimer

In spite of the provisions made in paragraphs 2 (1) and (2) above, it should be noted that some questions may prohibit the use of tables and/or calculators.